102 research outputs found

    On the relation between 2+1 Einstein gravity and Chern Simons theory

    Get PDF
    A simple example is given to show that the gauge equivalence classes of physical states in Chern Simons theory are not in one-to-one correspondence with those of Einstein gravity in three spacetime dimensions. The two theories are therefore not equivalent. It is shown that including singular metrics into general relativity has more, and in fact a quite counter-intuitive, impact on the theory than one naively expects.Comment: 14 pages, LaTeX2e, 3 eps figure

    New representation and a vacuum state for canonical quantum gravity

    Get PDF
    A new representation for canonical gravity and supergravity is presented, which combines advantages of Ashtekar's and the Wheeler~DeWitt representation: it has a nice geometric structure and the singular metric problem is absent. A formal state functional can be given, which has some typical features of a vacuum state in quantum field theory. It can be canonically transformed into the metric representation. Transforming the constraints too, one recovers the Wheeler~DeWitt equation up to an anomalous term. A modified Dirac quantization is proposed to handle possible anomalies in the constraint algebra.Comment: 28 pages, LaTe

    The 2+1 Kepler Problem and Its Quantization

    Get PDF
    We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.Comment: 59 pages, LaTeX2e, 9 eps figure

    Physical States in d=3,N=2 Supergravity

    Full text link
    To clarify some issues raised by D'Eath's recent proposal for the physical states of N=1N=1 supergravity in four dimensions, we study pure (topological) N=2N=2 supergravity in three dimensions, which is formally very similar, but much easier to solve. The wave functionals solving the quantum constraints can be understood in terms of arbitrary functions on the space of moduli and supermoduli, which is not Hausdorff. We discuss the implications for the wave functionals and show that these are not amenable to expansions in fermionic coordinates, but can serve as lowest-order solutions to the quantum constraints in an expansion in \hbar in more realistic theories.Comment: 11 pages, Report DESY 93-125, THU-93/1

    The Phase Space Structure of Multi Particle Models in 2+1 Gravity

    Get PDF
    What can we learn about quantum gravity from a simple toy model, without actually quantizing it? The toy model consists of a finite number of point particles, coupled to three dimensional Einstein gravity. It has finitely many physical degrees of freedom. These are basically the relative positions of the particles in spacetime and the conjugate momenta. The resulting reduced phase space is derived from Einstein gravity as a topological field theory. The crucial point is thereby that we do not make any a priori assumptions about this phase space, except that the dynamics of the gravitational field is defined by the Einstein Hilbert action. This already leads to some interesting features of the reduced phase space, such as a non-commutative structure of spacetime when the model is quantized.Comment: 72 pages, LeTeX2e, 10 eps figure

    The Anti-de Sitter Gott Universe: A Rotating BTZ Wormhole

    Get PDF
    Recently it has been shown that a 2+1 dimensional black hole can be created by a collapse of two colliding massless particles in otherwise empty anti-de Sitter space. Here we generalize this construction to the case of a non-zero impact parameter. The resulting spacetime, which may be regarded as a Gott universe in anti-de Sitter background, contains closed timelike curves. By treating these as singular we are able to interpret our solution as a rotating black hole, hence providing a link between the Gott universe and the BTZ black hole. When analyzing the spacetime we see how the full causal structure of the interior can be almost completely inferred just from considerations of the conformal boundary.Comment: 46 pages (LaTeX2e), 13 figures (eps

    Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity

    Get PDF
    We study the phase space structure and the quantization of a pointlike particle in 2+1 dimensional gravity. By adding boundary terms to the first order Einstein Hilbert action, and removing all redundant gauge degrees of freedom, we arrive at a reduced action for a gravitating particle in 2+1 dimensions, which is invariant under Lorentz transformations and a group of generalized translations. The momentum space of the particle turns out to be the group manifold SL(2). Its position coordinates have non-vanishing Poisson brackets, resulting in a non-commutative quantum spacetime. We use the representation theory of SL(2) to investigate its structure. We find a discretization of time, and some semi-discrete structure of space. An uncertainty relation forbids a fully localized particle. The quantum dynamics is described by a discretized Klein Gordon equation.Comment: 58 pages, 3 eps figures, presentation of the classical theory improve
    corecore